分布检验

Reads: 877 Edit

1 卡方检验与列联表分析

1.1 检验实际分布与理论分布是否一致

为了检验制造的骰子是否合格(每个点数出现的概率均为1/6),进行了600次实验,1至6点出现的频数分别为(118,95,106,122,87,72),采用卡方检验该骰子与理论分布是否一致!

> testData=c(118,95,106,122,87,72)
> chisq.test(testData,p=c(1/6,1/6,1/6,1/6,1/6,1/6))

    Chi-squared test for given probabilities

data:  testData
X-squared = 18.22, df = 5, p-value = 0.002683

说明:p-value = 0.002683<0.05,因而拒绝原假设,认为该骰子不合格。

1.2 列联表分析

针对某种病毒引起的疾病,有两种治疗方案,采用方案一的治疗人数为100人,有效83人,无效17人;采用方案二的治疗人数138人,有效117人,无效21人。采用列联表分析两种药效是否一样!

治疗方案 有效 无效
方案一  83   17
方案二  117  21

> tableData=matrix(c(83,17,117,21),nrow=2,ncol=2,byrow = TRUE)
> chisq.test(tableData)

    Pearson's Chi-squared test with Yates' continuity correction

data:  tableData
X-squared = 0.036601, df = 1, p-value = 0.8483

说明:p-value = 0.8483>0.05,因而接受原假设,认为两种治疗方案效果一样。

需要注意的是列联表分析对样本量比较敏感,我们对上面的例子扩大100倍,每种方案有效的比例维持不变,重新进行列联表分析!

治疗方案 有效 无效
方案一  8300  1700
方案二  11700 2100

> tableData=matrix(c(8300,1700,11700,2100),nrow=2,ncol=2,byrow = TRUE)
> chisq.test(tableData)

    Pearson's Chi-squared test with Yates' continuity correction

data:  tableData
X-squared = 13.6, df = 1, p-value = 0.0002262

说明:p-value = 0.0002262<0.05,因而拒绝原假设,认为两种治疗方案效果不一样。这与上面的例子结果相反。

2 K-S检验

2.1 单样本K-S检验

> x=c(0.051,0.926,0.209,0.358,1.672,-1.191,1.404,1.112,0.108,-0.429,0.746,1.304,0.292,-1.587,-0.815)
> ks.test(x,"pnorm")

    One-sample Kolmogorov-Smirnov test

data:  x
D = 0.25367, p-value = 0.2444
alternative hypothesis: two-sided

说明:p-value = 0.2444>0.05,因而接受原假设,认为样本服从正态分布。

> ks.test(x,"pexp",4)

    One-sample Kolmogorov-Smirnov test

data:  x
D = 0.34941, p-value = 0.03847
alternative hypothesis: two-sided

说明:p-value = 0.03847<0.05,因而拒绝原假设,认为样本不服从参数为4的指数分布。

> ks.test(x, "pgamma", 3, 2)

    One-sample Kolmogorov-Smirnov test

data:  x
D = 0.56388, p-value = 4.982e-05
alternative hypothesis: two-sided

说明:p-value = 4.982e-05<0.05,因而拒绝原假设,认为样本不服从参数为3和2的伽马分布。

2.2 双样本K-S检验

> x=c(0.051,0.926,0.209,0.358,1.672,-1.191,1.404,1.112,0.108,-0.429,0.746,1.304,0.292,-1.587,-0.815)
> y=c(-0.488,-0.466,2.464,-0.959,0.592,-0.925,0.0206,0.048,-1.857,0.708)
> ks.test(x,y)

    Two-sample Kolmogorov-Smirnov test

data:  x and y
D = 0.43333, p-value = 0.1729
alternative hypothesis: two-sided

说明:p-value = 0.1729 > 0.05,因而接受原假设,认为两个样本服一样。


Comments

Make a comment