支持向量机模型

Reads: 986 Edit

1 数据

以R中自带的鸢尾花数据集为例,根据花瓣、萼片的长宽来预测植物类别!

> data(iris)
> iris
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1            5.1         3.5          1.4         0.2     setosa
2            4.9         3.0          1.4         0.2     setosa
3            4.7         3.2          1.3         0.2     setosa
4            4.6         3.1          1.5         0.2     setosa
5            5.0         3.6          1.4         0.2     setosa
6            5.4         3.9          1.7         0.4     setosa
7            4.6         3.4          1.4         0.3     setosa
8            5.0         3.4          1.5         0.2     setosa

说明:iris是R自带的数据,Species是鸢尾花的种类,Sepal.Length Sepal.Width Petal.Length Petal.Width分别是萼片、花瓣的长和宽。

2 划分训练集和测试集

> dim(iris)
[1] 150   5
> n=dim(iris)[1]
> sp=sample(1:n,size=round(n*0.3),replace=FALSE)     # 随机抽取30%的数据
> iris_train=iris[-sp,]                      # 70%作为训练集
> iris_test=iris[sp,]                       # 30%作为测试集

3 采用SVM模型进行分类

> install.packages("e1071")
> library(e1071)

3.1 使用默认参数

训练模型:

> fit_svm = svm(Species~.,data=iris_train)

预测:

> pdt = predict(fit_svm,iris_test)
> sum(as.vector(pdt)==iris_test$Species)/dim(iris_test)[1]
[1] 0.9111111
> table(as.vector(pdt),iris_test$Species)

             setosa versicolor virginica
  setosa         15          0         0
  versicolor      0         13         4
  virginica       0          0        13

> plot(fit_svm,data = iris_test,Petal.Width~Petal.Length,slice = list(Sepal.Width = 3, Sepal.Length = 5))

说明:由于是四维空间中截取了(Sepal.Width = 3, Sepal.Length = 5)一个平面,所以图像不能用于判断样本点的划分。

r-92

3.2 设置核函数

训练模型:

> fit_svm1 = svm(Species~.,data=iris_train,kernel = "linear",cost=2)

预测:

> pdt1 = predict(fit_svm1,iris_test)
> sum(as.vector(pdt1)==iris_test$Species)/dim(iris_test)[1]
[1] 0.9333333
> table(as.vector(pdt1),iris_test$Species)

             setosa versicolor virginica
  setosa         15          0         0
  versicolor      0         13         3
  virginica       0          0        14

说明:virginica的分类正确数由13增加到14

3.3 自动选择最优参数

训练模型:

> fit_svmAuto = tune(svm,Species~.,data = iris_train,ranges = list(epsilon = seq(0,1,0.1,),cost = c(2:100)))
> plot(fit_svmAuto)

说明:颜色越深,说明cost的取值越好

r-93

> fit_svmAuto$best.model

Call:
best.tune(method = svm, train.x = Species ~ ., data = iris_train, ranges = list(epsilon = seq(0, 
    1, 0.1, ), cost = c(2:100)))


Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  radial 
       cost:  2 

Number of Support Vectors:  32

说明:选择的最优模型为cost=2,核函数为radial,共有32个支持向量

预测:

> bestmodel=fit_svmAuto$best.model
> pdt2 = predict(bestmodel,iris_test)
> sum(as.vector(pdt2)==iris_test$Species)/dim(iris_test)[1]
[1] 0.9333333
> table(as.vector(pdt2),iris_test$Species)

             setosa versicolor virginica
  setosa         15          0         0
  versicolor      0         13         3
  virginica       0          0        14

说明:对于测试样本,精度依然为93.33%


Comments

Make a comment